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Abstract Let � be a compact three-manifold with non-positive Yamabe invariant.
We prove that in any long time constant mean curvature Einstein flow over �, having
bounded Cα space–time curvature at the cosmological scale, the reduced volume
V = (−k

3 )3volg(k)(�) [g(k) is the evolving spatial three-metric and k the mean
curvature] decays monotonically towards the volume value of the geometrization in
which the cosmologically normalized flow decays. In more basic terms, we show that
there is volume collapse in the regions where the injectivity radius collapses (i.e. tends
to zero) in the long time limit. We conjecture that under the curvature assumption
above the Thurston geometrization is the unique global attractor. We prove this in
some special cases.

Keywords Large scale · Cosmological solutions · Constant mean curvature

1 Introduction

A long-standing problem in General Relativity is to understand the long time evolution
of cosmological solutions (solutions with compact space-like sections) of the Einstein
equations at the cosmological scale. In other words, to understand the large-scale
shape of general cosmological solutions. Stated in full mathematical generality, the
problem is outstandingly difficult and at present out of reach.1 In this article we will

1 The area of cosmology, for which understanding the large-scale shape is of central interest, overcame
the mathematical difficulty by assuming large-scale homogeneity and isotropy and that only the averaged
properties of matter contribute to the dynamic at the large-scales. The assumption reduces the mathematical
complexity to the study of three well known models: the K = −1, 0, 1 Friedman–Lemaître cosmologies.
It is worth remarking that the justification of such assumptions has now become a problem itself, the
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1084 M. Reiris

present some progress on this problem for solutions satisfying suitable assumptions.
In particular, we will investigate cosmological solutions of the Einstein constant mean
curvature (CMC) flow equations on three-manifolds � with non-positive Yamabe
invariant (see below) and having a uniform (in time) bound in the Cα space–time
curvature (see below) at the cosmological scale.2

Since stating the results with precision requires some technical elaboration, we
begin by informally discussing the ideas involved. We then take time to discuss related
developments. Immediately thereafter we introduce primary terminology (as not all
of it is standard in the field) and use it to give a detailed description of the contents in
the rest of the article.

Consider a cosmological solution of the Einstein equations admitting a Cauchy
hypersurface ∼ � of constant mean curvature (CMC) different from zero. Assume the
Yamabe invariant3 Y (�) of � is non-positive. We will look at the flow (g, K ) along
the (unique) CMC foliation where g is the three-metric inherited from the space–
time metric g and K the second fundamental form at every CMC slice. The main
object of study will be the cosmologically normalized (CMC) flow, namely the flow
(g̃, K̃ ) = (( k

3 )2g, −k
3 K ) (see later). In elementary terms, our main result states that if

the space–time curvature at the cosmological scale has uniformly bounded (in time)
Cα norm with respect to every slice in the CMC foliation, then as the mean curvature
k tends to zero4 the flow (g̃, K̃ ) separates the manifold � persistently into a (possibly
empty) H (-hyperbolic) sector and a (possibly empty) G (-graph) sector with particular
properties that we describe next. The H sector consists of a finite set of manifolds
admitting a complete hyperbolic metric gH of finite volume. Over each one of the
H pieces the flow (g̃, K̃ ) converges to (gH ,−gH ) in the long time. The G sector is
instead a graph manifold5 and over it the injectivity radius collapses (i.e. tends to zero)
at every point and in the long time. Moreover, the volume of the G sector relative to
the metric g̃ collapses to zero. This shows that in the long time, the volume of �

relative to the metric g̃ converges to the sum of the volumes of the hyperbolic pieces in
the H sector. The separation into the H and G sectors is called a geometrization. As

1 footnote continued
so-called averaging problem in cosmology [4] which is presently the center of a large debate. The K = 0, −1
Friedman-Lemaître models have non-compact spatial sections, isometric to the flat R

3 for the K = 0
FL-model or the hyperbolic three-space (with dynamical sectional curvature) still diffeomorphic to R

3

for the K = −1 case. Both models however can be compactified to obtain cosmological solutions (with
compact slices). Perturbations of these models have also been largely studied by cosmologists.
2 The curvature assumption explicitly prohibits the formation of singularities. In this sense the present work
is about the evolution of cosmological solutions which do not develop singularities at the cosmological scale.
From a topological perspective, it deals with solutions whose large-scale shape is driven by the topology
of the three-dimensional space-like sections.
3 The Yamabe invariant of a compact three-manifold is defined as the supremum of the scalar curva-
tures of unit volume Yamabe metrics. Yamabe metrics are metrics minimizing the Yamabe functional

(
∫
� Rgdvg/V

1
3

g ) over a fixed conformal class [g]. The Yamabe invariant is also known as sigma constant
(see for instance [7]).
4 Note that when k → 0 the cosmological time t = −1/k diverges. We will use the terminology “in the
long time” to mean “when k → 0”.
5 A graph manifold is a manifold obtained as a sum along two-tori of U (1) bundles over two-surfaces.
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On the asymptotic spectrum of the reduced volume in cosmological solutions 1085

explained below, these results point towards a much deeper picture of the long time
evolution of CMC solutions at the cosmological scale and under curvature bounds,
namely that the Thurston geometrization (see later) is the only global attractor.

This article has its roots in the works [1,6,7,11]. In Fischer and Moncrief [7],
studied for the first time the notion of volume collapse at the cosmological scale and
its relationship to the Yamabe invariant.6 In particular, they investigated the reduced
volume for a number of natural examples and demonstrated in these a connection
between the asymptotic value of the reduced volume and the topology of the Cauchy
hypersurfaces. Their analysis validates the results of this article. A related investigation
was carried out by Anderson in the seminal work [1], where it is proved (also using
the CMC gauge) that under pointwise curvature bounds (see the article for a precise
statement) there is a sequence of CMC slices with k → 0 on which the Einstein
flow (suitable scaled) geometrizes the three-manifold. Similar results were obtained
in [11], where the reduced volume was exploited. Finally, the notion of cosmological
normalized flow that we use here was elaborated in [12] following [3].

Remark 1 In the context of flows on manifolds with non-positive Yamabe invariant,
there are strong relations between the Einstein and the Ricci flow. In Hamilton [9],
proved that under curvature bounds the Ricci flow geometrizes the manifold in much
the same way that we prove that the Einstein flow does. He proves, however, that
the tori separating the H and G pieces are incompressible and therefore the long
time geometrization is the Thurston geometrization. It may be interesting to apply the
results on volume collapse carried out in this paper to the Ricci flow under curvature
bounds.

We now turn to a more detailed description of the contents. In technical terms we
will be dealing with space–times (M, g) where M is a four-dimensional manifold
and g a C∞7 Lorentzian (3, 1) metric satisfying the Einstein equations in vacuum
Ric = 0. Assume that there is a space-like slice of non-zero constant mean curvature
(k) diffeomorphic to a three-dimensional manifold �. As is well known (see [13]
and references therein) there is a unique region �CMC inside M and diffeomorphic to
R × � where the mean curvature k (which serves as a coordinate for the first factor)
varies monotonically. Assume that � is of non-positive Yamabe invariant Y (�) (if
Y (�) > 0 it is conjectured [13] that the flow becomes extinct in finite proper time in
any of the two time-directions from any CMC slice. Therefore, in this case the flow
would not be a long time flow). In this situation it is easy to check from the energy
constraint that k never becomes zero. The existence of a CMC slice of non-zero mean
curvature defines two different time directions in �CMC: the direction in which the
CMC slices increase volume that we will call “the future” and the direction in which
they decrease volume that we will call “the past”.8 We are interested in the dynamics

6 The volume at the cosmological scale is the volume of � relative to the metric g̃, namely V = (−k
3 )3volg .

We will call it either the volume at the cosmological scale or the reduced volume (see later). Note that Fischer
and Moncrief use different terminology. They use sigma constant to refer to what we call Yamabe invariant
and reduced Hamiltonian for what we call reduced volume. We won’t be following it here.
7 We will assume all through that the Lorentzian space–time metric is of class C∞.
8 By the Hawking singularity theorem all past directed time-like geodesics starting at a common CMC
slice terminate before a uniform time lapse.
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1086 M. Reiris

in the future direction. The CMC foliation induces a 3+1 splitting which allows us to
write the metric g as

g = −(N 2 − |X |2)dk2 + X∗ ⊗ dk + dk ⊗ X∗ + g, (1)

where N is the lapse function, X the shift vector and g is a three-Riemannian metric on
� (depending on k). Thus the space–time metric g is described by a flow (N , X, g)(k)

that we will call the Einstein (CMC) flow. Let T be the normal vector field to the
CMC foliation which points in the future direction. The second fundamental form K
of the CMC slices is K = − 1

2LT g9 and therefore k = trg K . The Einstein equations
Ric = 0 in the CMC 3+1 splitting are

R = |K |2 − k2, (2)

∇.K = 0, (3)

ġ = −2N K + LXg, (4)

K̇ = −∇∇N + N (Ric + kK − 2K ◦ K ) + LX K , (5)

−�N + |K |2 N = 1. (6)

Equations (2),(3) are the constraint equations, Eqs. (4), (5) are the Hamilton–Jacobi
equations of motion and (6) is the (fundamental) lapse equation which is obtained
after contraction of (5). Thus N gets uniquely determined from (g, K ) after solving
(6). Different choices of the shift vector give different flows (X, N , g) over � but
the space–time solutions g they represent via Eq. (1) are isometric. Thus up to space–
time diffeomorphism the Einstein flow is uniquely determined from the (abstract) flow
(g, K )(k). We will use the choice of X = 0 all through the article.

In cosmological terms the mean curvature k is a measure of the universe expansion
and can be identified [12] with −3H, where H is the Hubble parameter (constant
over each slice of the CMC foliation). At a slice {k0} × � the Hubble parameter
is H0 = − k0

3 and if we scale the space–time metric g as g̃ = H2
0g we get a new

space–time metric which is a new solution of the Einstein equations in vacuum with
three-metric g̃ = H2

0g and second fundamental form K̃0 = H0 K at the same slice, thus
having Hubble parameter equal to one (only in that slice). If we perform such scaling
at every slice in the CMC foliation we obtain a flow (g̃, K̃ )(H) = (H2g,HK )(H)

which we will call the cosmologically normalized Einstein flow or the Einstein flow
at the cosmological scale. The cosmologically normalized flow is the subject of the
present article. Cosmologically normalized tensors will be denoted with a tilde either
above or next to them. For example the space–time Riemannian tensor Rm δ

αβγ is scale
invariant, therefore the cosmologically normalized Riemann curvature tensor is itself.
The normal unit vector field T scale as T/H and the combination E = Rmαβγ δT αT γ

(the electric component of Rm) is scale invariant. We will study the cosmologically
normalized flow under the following curvature assumption.

9 LX denotes the Lie derivative along the vector field X
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On the asymptotic spectrum of the reduced volume in cosmological solutions 1087

Curvature assumption:10 There is a constant � > 0 such that, at any time H, the

Cα
g̃ (H) norm of the cosmological normalized Riemann tensor ˜Rm

δ

αβγ (= Rm δ
αβγ ) is

bounded above by �.

Remark 2 (on the Cα norm of the Riemann tensor). Given a slice {H}×� we decom-
pose the space–time Riemann tensor Rm into its electric Eαγ = Rmαβγ δT β T δ and
magnetic component Bαγ = Rm∗

αβγ δT β T δ , where ∗ means Hodge dual (see [5]).
Now E and B are two (2, 0), T -null tensors, which are symmetric and traceless. The
Cα

g̃ norm of Rm in the slice {H}×� is defined as the Cα
g̃ norms of E and B as tensors

in the Riemannian manifold (�, g̃(H)) (see the background section for a definition of
the Cα

g̃ norm of a tensor). These Cα
g̃ norms are assumed to be uniformly bounded by

� for all H along the evolution.

Remark 3 There is an example due to Ringström11 [14] (Proposition 2) of a homoge-
neous Bianchi VIII model, showing that while there are no singularities being formed
the curvature assumption above is only satisfied over a divergent sequence of times,
but not for all. The existence of such a sequence is enough to apply many of the results
of this article and to conclude in particular volume collapse.

The first main result will be the following.

Theorem 1 Say Y (�) ≤ 0 and say (g̃, K̃ ) is a cosmologically normalized Einstein
flow (in vacuum) satisfying the curvature assumption. Then the range of H is of the
form (0, a) (it is a long time flow) and as H → 0 (i.e. in the long time) the flow
(weakly or strongly) persistently geometrizes the manifold �.

Let us explain what a weak or strong geometrization is. Recall first the thick–thin
decomposition of a Riemannian manifold.12 Denote by �ε the set of points in (�, g̃)

where the injectivity radius is bounded below by ε and �ε the set of points where the
injectivity radius is bounded above by ε. �ε and �ε are called the ε-thick and ε-thin
parts of (�, g̃) and such decomposition is called the ε-thick–thin decomposition. A
flow (g̃, K̃ ) in � geometrizes � iff there is (a continuous) ε(H) with ε(H) → 0 as
H → 0 such that after a sufficiently long time (i.e. after H gets sufficiently small)
�ε is persistently diffeomorphic to a graph manifold to be denoted by G and �ε

is persistently diffeomorphic to a finite set of manifolds (Hi ), to be denoted as H ,
admitting a complete hyperbolic metric of finite volume (g̃H,i ) and with (�ε, (g̃, K̃ ))

converging to ∪i=n
i=1(Hi , (g̃H,i ,−g̃H,i )) in C2,β × C1,β (see the background section

for a precise description of the convergence). The manifolds separating the G and H
sectors are two-dimensional tori. If all the tori are incompressible (their fundamental
groups inject into the fundamental group of �) the geometrization is said to be strong
and well known to be unique (actually equivalent to the Thurston decomposition of

10 It is fundamental that we assume pointwise bounds of the curvature, i.e. bounds in the Cα norm of Rm.
L2 bounds instead seem too weak to control the geometry in the thin parts.
11 The investigation is in connection with the a priori curvature condition given in [1]. It is easy to show
that the example doesn’t satisfy our curvature assumption continuously in time.
12 The Thick–thin decomposition is a well know and standard separation of a Riemannian manifold.
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1088 M. Reiris

Fig. 1 Large-scale picture of a cosmological solution. Observe that the reduced volume V is represented
as decreasing

the manifold). If one of the tori is not incompressible, the geometrization is said to be
weak. A schematic picture of a geometrization is given in Fig. 1. Let us exemplify the
geometrization phenomenon with some simple but illustrative cases.

1. Y (�) < 0. The flat cone or Robertson–Walker K = −1 solution is g = −dt2 +
t2gH where gH is a hyperbolic metric on a hyperbolic manifold �H . The mean
curvature is k = −3

t and the normalized flow converges (it is actually steady) to
(gH ,−gH ) on the three-dimensional manifold �H . The solution is flat.

2. Y (�) = 0.

(a) Consider now the solution g = −dt2 + t2

4 σ + dθ2 on � = Sgen × U (1),
where Sgen is a compact surface of genus gen > 1, σ is a metric of constant
scalar curvature equal to −1 on Sgen and dθ2 is the standard element of length
on U (1). The mean curvature is k = −2

t and the normalized flow collapses
to a state ( σ

9 ,− 2σ
3 ) on the two-dimensional manifold Sgen . The solution is

flat.
(b) The Kasner (1, 0, 0) (with unit coefficients) is defined as g = −dt2+t2dθ2

1 +
dθ2

2 +dθ2
3 on � = T 3. The mean curvature k = −1

t and the normalized flow
collapses to a state ( 1

9 dθ2
1 , −1

3 dθ2
1 ) on the one-dimensional manifold U (1).

The solution is flat.
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On the asymptotic spectrum of the reduced volume in cosmological solutions 1089

(c) The Kasner ( 2
3 , 2

3 , −1
3 ) with unit coefficients is defined as g = −dt2 +

t
4
3 dθ2

1 + t
4
3 dθ2

2 + t
−2
3 dθ2

3 on � = T 3. The mean curvature is k = −1
t and

the normalized flow collapses with bounded curvature to a point, i.e. to the
zero-dimensional space.

A crucial quantity used in the proof of Theorem 1 is the reduced volume V = H3Vg(H)

which is the volume of the cosmologically normalized metric g̃.13 As it turns out [6]
the reduced volume (which is scale invariant) is either monotonically decreasing or
steady in which case the solution is a flat cone. Equally important, the infimum of
the reduced volume when it is thought as a function on CMC states (g, K ) (i.e. pairs

(g, K ) satisfying the constraint equations) is given by Vin f = (
−Y (�)

−6 )
3
2 [6]. The

natural question is whether it is always the case that V ↓ Vin f , at least under the
curvature assumption above. If so, it is known [11] that the geometrization is strong
and (therefore) unique. We will call it the Thurston geometrization. We conjecture that
such is always the case for solutions satisfying the curvature assumption.

Conjecture 1 Say Y (�) ≤ 0 and say (g̃, K̃ ) is a cosmologically normalized Einstein

flow satisfying the assumption. Then V ↓ Vin f = (
−Y (�)

6 )
3
2 .

Another way to express the conjecture is that the Thurston geometrization is a global
attractor for cosmologically normalized flows satisfying the curvature assumption on
manifolds with non-positive Yamabe invariant. If valid, the conjecture implies that the
(scale invariant) Yamabe functional

Y (g) =
∫
�

Rgdvg

V
1
3

g

,

converges to the Yamabe invariant Y (�) along the flow. A sketch of the proof is
as follows: Under the curvature assumption the scalar curvature Rg̃ is known to be
bounded (above and below, see Proposition 2 later). On the other hand it is known that

for manifolds with Y (�) ≤ 0 it is [2] (
−Y (�)

6 )
3
2 = ∑i=n

i=1 volg̃H,i (Hi ) where Hi are
the hyperbolic pieces in the Thurston decomposition of �. If V ↓ Vin f the volume of

the G sector collapses to zero and therefore
∫

G Rg̃dvg̃

V
1
3

g̃

→ 0. As Rg̃ → −6 on the H

sector we have Y (g̃) = Y (g) → Y (�) as desired.
The second main result will be to show that the G sector always collapses in

(reduced) volume.14

Theorem 2 Say Y (�) ≤ 0 and say (g̃, K̃ ) is a cosmologically normalized flow satis-
fying the curvature assumption. Then the reduced volume of the total space converges
towards the volume value of the long time geometrization.

13 To our knowledge Fischer and Moncrief were the first to consider the reduced volume in the context of
long time evolution in the CMC gauge.
14 We note that this is a non-trivial statement. Consider the two-manifold [a, b]×S1 with the time dependent
metric g = t2dx2 + 1

t2 dθ2. The volume is the same for all t but in jg → 0.
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1090 M. Reiris

The volume value of the geometrization (see also the background section) is∑i=n
i=1 VgH,i (Hi ). This result is a first step to prove the conjecture above. In fact it

validates the conjecture in some particular cases described by Corollaries 1–4, whose
proofs will be given after that of Theorem 2.

Corollary 1 Say Y (�) ≤ 0. Given � there is ε such that for any cosmologically
normalized flow satisfying the curvature assumption (with the same �) and having
V − Vin f ≤ ε at an initial time, it is V ↓ Vin f in the long time.

In basic terms, what Corollary 1 says is that if we restrict to the set of solutions
satisfying the curvature assumption with a fixed � then the Thurston geometrization
is stable (in the class).

Corollary 2 Say Y (�) ≤ 0 and say (g̃, K̃ ) is a cosmologically normalized flow
satisfying the curvature assumption that is locally collapsing at every point, i.e. there
is no H sector in the long time geometrization. Then Y (�) = 0 and V ↓ Vin f = 0.

Let V0 be the infimum of the volumes of all complete hyperbolic manifolds (with
sectional curvature normalized to one), with or without cusps (this number is known
to be positive [15]). Then we have

Corollary 3 Say Y (�) ≤ 0 and say (g̃, K̃ ) is a cosmologically normalized flow
satisfying the curvature assumption. If at an initial time it is V < V0 then V ↓ Vin f = 0
in the long time.

Corollary 3 says that if we restrict to the class of solutions satisfying the curva-
ture assumption (with variable �), there is a threshold V0 for V at the initial time,
below which the long time gemetrization has only a G sector and the reduced volume
collapses to zero in the long time.

Corollary 4 Say Y (�) ≤ 0 and say (g̃, K̃ ) is a cosmologically normalized flow
satisfying the curvature assumption above. Then V ↓ Vin f iff the tori separating the
H and G sectors in the long time geometrization of the flow are incompressible in �.

Corollary 4 shows that to prove Conjecture 1 is sufficient to prove the topological
fact that the two-tori separating the H and G sectors are incompressible.

Finally as an outcome of the proof of Theorems 1 and 2 we will be able to prove

Corollary 5 Say Y (�) ≤ 0 and say (g̃, K̃ ) is a cosmologically normalized flow
satisfying the curvature assumption. Then the Bel-Robinson energy Q0(Rm) is an
o(H) (i.e. limH→0 Q0/H = 0).

2 Background and terminology

2.1 Convergence and collapse of Riemannian manifolds

We will make use the Cheeger–Gromov theory of convergence and collapse of
Riemannian three-manifolds under curvature bounds. In particular we will use exten-
sively the following result ([1] Propositions 4 and 5. See also [10])

123



On the asymptotic spectrum of the reduced volume in cosmological solutions 1091

Proposition 1 Let (�i , gi ) be a sequence of Riemannian three-manifolds with or
without boundary, with uniformly bounded Cα

gi
Ricci curvature, i.e. ‖Ricgi ‖Cα

gi
≤ �.

We have

1. say {xi } is a sequence of points such that dist (xi , ∂�i ) → ∞ and in jgi (xi ) ≥
in j0. Then one can extract a subsequence (�i j , xi j , gi j ) converging in C2,β to
(�∞, x∞, g∞)(β < α),

2. suppose non of the (�i is diffeomorphic to a closed space form (a quotient
of S3). Then for any ε > 0 and in j0 there is r(ε,�, in j0) with r → ∞ as
ε → 0, such that if dist (xi , ∂�i ) ≥ r there is a finite cover of the ball B(xi , r)

with in jgi (xi ) ∼ in j0.

A number of remarks are in order.
(i) If U is any tensor field on a Riemannian manifold (�, g) then the Ck,α

g norm of
U is defined as

‖U‖Ck,α
g

= sup
x∈�

{

|U |g(x) + |∇U |g(x) + · · · + |∇kU |g(x)

+ sup
y∈�

{ |∇kU (x) − ∇kU (y)|
dist (x, y)α

}}

.

The difference ∇kU (x)−∇kU (y) is by parallel transport along any shortest geodesic
joining x with y.

(ii) The convergence in item 1 in the Proposition above is in the following sense:
there is a sequence of submanifolds �̃i ⊂ �i with xi ∈ �̃i and dist(xi , ∂�̃i ) →
∞ and a sequence of diffeomorphisms (onto the image) ϕi : �̃i → �i such that
‖ϕi∗(gi ) − g∞‖

C2,β
g∞

→ 0.

(c) A sequence of tensorsUi in (�i , xi , gi ) converge in Ck,β toU∞ in (�∞, x∞, g∞)

if ‖ϕi∗Ui − U∞‖
Ck,β

g∞
→ 0.

(d) One practical consequence of Proposition 1 is that when it comes to find inter-
ior elliptic estimates of certain elliptic operators on collapsed regions, we may well
assume (because we can unwrap) that at the given point x where one wants to extract
the estimate there is a chart (z1, z2, z3) of harmonic coordinates covering the ball
B(x, in j0) with gi j (the components of g in the chart {z}) bounded in C2,α

{z} (now the
norms are standard Hölder norms on the chart {z}) by a constant C(in j0,�). We will
be using this fact repeatedly all through the article.

2.2 Electric-magnetic decomposition of the space–time curvature and some related
formulae

In this section, we introduce the electric/magnetic decomposition of the space–time
curvature and useful formulae. Non of the properties presented is given with a proof.
The reader can consult the references [3,5] for a detailed account on Weyl fields.

Let T be the normal unit vector field in the future direction and say g is a vacuum
solution of the Einstein equations. Then the electric and magnetic fields of Rm are
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1092 M. Reiris

defined by

Eab = Rmacbd T cT d , Bab =∗ Rmacbd T cT d .

The electric and magnetic fields are traceless and T -null (2, 0) vectors. In terms of g
and K they have the expressions

E = Ric + kK − K ◦ K , B = −Curl K ,

where Curl is the operator on symmetric (2, 0) tensors defined as (Curl A)ab =
1
2 (ε cd

a ∇d Acb + ε cd
b ∇d Aca) (εabc is the volume form). We also have

DivE = K ∧ B, DivB = −K ∧ B,

where (DivA)a = ∇b Aba is the divergence and ∧ is the operation (A ∧ C)a =
εbc

a A d
b Cdc. Dynamically (under zero shift) we have

Ė = NCurl B − ∇N ∧ B − 5

2
N (E × K ) − 2

3
N 〈E, K 〉g − 1

2
Nk E,

Ḃ = −NCurl E + ∇N ∧ E − 5

2
N (B × K ) − 2

3
N 〈B, K 〉k − 1

2
Nk B.

the dot meaning derivative with respect to k, 〈., .〉 is the inner product and × is the
operation

(A × C)ab = ε cd
a ε

e f
b AceCd f + 1

3
(A.C)gab − 1

3
(tr A)(trC)gab.

The Bel-Robinson tensor is the totally symmetric, traceless, (4, 0) tensor Qαβγ δ ,
defined as

Qαβγ δ = Rmαµγ νRm µ ν
β δ + Rm∗

αµγ νRm∗ µ ν
β δ .

We have Qαβγ δ(Rm)T αT β T γ T δ = |E |2g + |B|2g and ∇α Qαβγ δ(Rm) = 0. Denote
by Q the integral in � of QT T T T . Taking the divergence of QαT T T and integrating
we get the Gauss equation

Q̇ = −3
∫

�

N QαβT T �αβdvg.

where � is the deformation tensor �αβ =∇αTβ . Restricted to any CMC slice we
have � = −K , �T i = 1

N ∇i N , �T i = 0 and �T T = 0. Again dot means derivative
with respect to k. All through the article we will use the formulae above but for the
cosmologically normalized tensors. We will indicate that by using a tilde above the
referred tensor or by including a subindex g̃ next to tensor operation, for instance
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On the asymptotic spectrum of the reduced volume in cosmological solutions 1093

∧g̃ or |(.)|g̃ . The cosmological normalized versions of the equations above is straight-
forward to get and won’t be deduced when needed.

2.3 The Newtonian potential, the reduced volume element and the logarithmic time

When working with cosmologically normalized quantities, it is convenient to use
the logarithmic time σ = − ln −k as the time variable. Derivatives with respect to
σ of a cosmologically normalized quantity gives rise to a quantity which is also
cosmologically normalized. For the rest of the article derivatives with respect to σ

will be denoted with a dot.
To illustrate how to work with cosmologically normalized quantities let us introduce

the Newtonian potential φ = 3Ñ − 1 = 3NH2 − 1 and the reduced volume element
dν = H3dvg (both are scale invariant) and let us deduce the following pair of equations
which will be fundamental

ln(dν)
1
3

dσ
= φ, (7)

�g̃φ − |K̃ |2g̃φ = | ˜̂K |2g̃. (8)

We have used a hatˆabove K̃ to mean the traceless part of K̃ (with respect to g̃).15

Under zero shift we have

ddvg

dk
= 1

2
trg

dg

dk
dvg = −Nkdvg.

Now d/dσ = (d/dk)(dk/dσ) = −kd/dk and so

d ln(dν)
1
3

dσ
= d ln H

dσ
+ H(NH/3) = 3NH2 − 1, (9)

as desired. To get the Poisson-like equation for the Newtonian potential φ observe that
the lapse equation (6) is scale invariant and therefore

−�g̃ Ñ + |K̃ |2g̃ Ñ = 1.

Making Ñ = 1
3 (φ + 1) we get

−�g̃φ + |K̃ |2g̃φ = 3 − |K̃ |2g̃ = −| ˜̂K |2g̃.
A final remark. The Maximum principle applied to (8) gives −1 ≤ φ ≤ 0. This

important fact implies by Eq. (7) that the local reduced volume element dν is non-
increasing (under zero shift) and in particular that the reduced volume V is monoto-
nically decreasing unless is steady in which case the solution is a flat cone.

15 We will use the same notation for Ric.
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2.4 Geometric states and persistent geometric states

In this section we introduce some definitions, that although not strictly needed, puts
the main concepts used in a broad geometric context.

Definition 1 Given a compact three-manifold � define the geometric spectrum to be
the set of all its partitions (geometric states) of the form� = {H1 . . . , Hi , G1, . . . , G j }
where the H pieces are three manifolds possibly with boundary admitting a complete
hyperbolic metric of finite volume, and the G are graph three-manifolds possibly with
boundary. If any, the boundaries in all pieces are two-tori and a torus in the boundary
of a H piece is always a torus in the boundary of a G piece. Two geometric states are
said to be equivalent if there is an isotopy in � carrying the H and the G sectors of
one into the H and G sectors of the other. A geometric state is said to be pure if there
is only a H or a G piece.

Definition 2 Given a geometric state {H1, . . . , Hi , G1, . . . , G j }, its volume value V
is defined as the sum of the volumes of the complete hyperbolic metrics of finite volume
of the H pieces. The volumetric spectrum is defined as the set of all the volume values
for all the states in the geometric spectrum.

In this terminology, Theorem 1 says in particular that if ε is chosen sufficiently
small then after sufficiently long time the ε-thick–thin decomposition is a (persistent)
geometric state of the manifold. We will prove in Theorem 2 that V decreases to the
volume value of the geometric state in which the flow is decaying.

We make precise now the notion of persistence of a geometrization introduced in
section 1. These notions will be used in the proofs of the main results. We say that a long
time, cosmologically normalized flow (g̃, K̃ ) implements a persistent geometrization
iff either

1. in jg̃(σ )(�) → 0 as σ goes to infinity (in which case there is only one persistent
G piece) or

2. in jg̃σ (�) ≥ in j0 > 0 as σ goes to infinity (in which case there is only one
persistent H piece) and there is a continuous function ϕ : (− ln −a,∞) × H →
�, differentiable in the second factor, such that ‖ϕ∗g̃(σ ) − g̃H ‖

C2,β

g̃H

→ 0 as σ

goes to infinity, or
3. the injectivity radius collapses in some regions and remains bounded below in

some others (in which case there are a set of G pieces G1, . . . , G j and a set of H
pieces H1, . . . , Hk) and for any ε > 0 and for any H piece (Hi , g̃Hi ) there is a
continuous function ϕi : (− ln −a,∞) × H ε

i → �, differentiable in the second
factor such that ‖ϕ∗

i g̃(σ ) − g̃Hi‖C2,β

g̃Hi

→ 0 as σ goes to infinity.

2.5 Some useful terminology

Any sequence {σi } of logarithmic times (σi = − ln −ki ) which is diverging i.e.
limi→∞ σi = ∞ will be called a diverging sequence of logarithmic times and abbrevia-
ted DSLT. Given a DSLT, {σi }, we say that a sequence of sets �(σi ) has asymptotically

123
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total reduced volume (ATRV) if V(�(σi )) → V∞ as σi → ∞ where V∞ is the limit
of the reduced volume in the long time. Similarly we can define a set having asymp-
totically non-zero (ANZRV) or asymptotically zero reduced volume (AZRV). We say
that a quantity f controls a quantity h if | f | < M implies |h| < C(M), and f controls
h at zero if M → 0 implies C(M) → 0.

3 Proof of the main results and corollaries

This section is organized as follows. We prove first three propositions (Propositions 2–
4) that would frame the proofs of Theorems 1 and 2. We prove then Theorems 1 and
2 and next the Corollaries 1–5.

Let us give a heuristic behind the proofs of Theorems 1 and 2. The key ingredient is
to look at the reduced volume. As it is monotonic, it must settle in some limit value V∞
as H → 0. Therefore in the regions where the injectivity radius is bounded below (in
(�, g̃(σ ))) it must be φ ∼ 0 otherwise by Eq. (7) the volume would keep decreasing

and eventually become below V∞. Using Eq. (8) this implies | ˜̂K |2g̃ ∼ 0 which after

using the Einstein equations implies | ˜̂Ric|2g̃ ∼ 0. In other words the regions where
the injectivity radius remains bounded below become hyperbolic. This argument gives
in essence Theorem 1. Theorem 2 is more involved because it deals with the regions
where the injectivity radius collapses. We are able to show however that if the G
regions (where the injectivity radius collapses) carry a non-zero reduced volume (call
it V0), then the regions inside G whose unwrapped geometry becomes hyperbolic carry
asymptotically all the volume V0. This fact will imply an isoperimetric inequality sho-
wing that the regions lying at a distance between 1/2 and 1 from the collapsed regions
and whose unwrapped geometry is becoming hyperbolic, carry also asymptotically a
non-zero reduced volume (if V0 �= 0). As these two regions are disjoint, the limit of
the volume of the G regions must be above V0 which is a contradiction.

Proposition 2 Say Y (�) ≤ 0 and say (g̃, K̃ ) is a cosmologically normalized flow
satisfying the curvature assumption. At any logarithmic time σ we have the following
properties.

1. ‖ ˜̂K‖C1,α
g̃

, ‖ ˜̂Ric‖Cα
g̃

and ‖φ‖C2,α
g̃

are controlled by �.

2. For any ε > 0 there is δ(ε,�) > 0 such that at any point p if |φ(p)| ≤ δ then

| ˜̂K |g̃(p) ≤ ε. In other words −φ(p) controls | ˜̂K |g̃(p) at zero.

Proof 1. As has been proved in [1, Proposition 2.2], ‖K̃‖L∞
g̃

and ‖Ric‖L∞
g̃

are control-
led by �. Consider the elliptic system

Div ˜̂K = 0, (10)

Curlg̃
˜̂K = −B, (11)
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Pick a point x ∈ � and unwrap16 if necessary to have in jg̃(x) ≥ in j0. Then interior

Schauder estimates [8] show that ‖ ˜̂K‖C1,α
g̃ (B(x,in j0/2))

is controlled by �. Therefore

‖ ˜̂K‖C1,α
g̃

is controlled by �. From E = ˜Ric − 3K̃ + K̃ ◦ K̃ we get that ‖ ˜Ric‖Cα
g̃

is

controlled by �. Schauder estimates applied to

�g̃φ − | ˜̂K |2g̃φ = |K̃ |2g̃,
show that ‖φ‖C2,α

g̃
is controlled by �.

2. Suppose there is a sequence of logarithmic times {σi } and a sequence of points

{xi } such that φ(xi , σi ) → 0 but | ˜̂K |g̃(σi )(xi , σi ) ≥ M with M > 0. Unwrapping if
necessary to have in jg̃(xi ) ≥ in j0 we can extract a subsequence of {σi } such that on
the balls B(xi , in j0/2), g̃(σi ) converges in C2,β to a limit metric g̃∞, φ converges in

C2,β to a limit φ∞ ≤ 0 with φ∞(x∞) = 0 and ˜̂K converges in C1,β to a limit ˜̂K∞
with | ˜̂K |g̃∞(x∞) ≥ M , all satisfying the equation

�g̃∞φ∞ − |K̃∞|2g̃∞φ∞ = | ˜̂K |2g̃∞ .

However at x∞ it is 0 ≥ (�g̃∞φ∞)(x∞) = | ˜̂K |2g̃∞(x∞) > M > 0 which is absurd.
��

Proposition 3 Say � is a compact three-manifold with bounded Cα
g norm of the

curvature and bounded volume, i.e. ‖Ric‖Cα
g

+ volg(�) ≤ �, and say r < r ′. Then
there is C(�, r, r ′) such that for any measurable subset � it is volg(B(�, r)) ≥
C(�, r, r ′)volg(B(�, r ′)) where B(�, s) is the ball of � with radius s.

Proof Let K(�) < 0 be a lower bound for the sectional curvatures of any Riemannian
three-manifold with ‖Ric‖L∞

g
≤ C(�). Let {xi , i = 1, . . . , m} ⊂ � be any set

of m points. By the Bishop–Gromov volume comparison the function
volg(∪i=m

i=1 B(xi , r))/volgK(o, r) is monotonically decreasing as r increases, where
gK is a metric of constant sectional curvature K in R

3. We have therefore

volg(∪i=m
i=1 B(xi , r ′)) ≤ C(�, r, r ′)volg(∪i=m

i=1 B(xi , r)), (12)

for any r < r̄ . Now consider a measurable set �. There is {xi , i = 1, . . . ,∞} ⊂ �

such that

∪i=m
i=1 B(xi , r) ↑m B(�, r),

and

∪i=m
i=1 B(xi , r ′) ↑ B(�, r ′).

16 So far we have L∞
g̃

control of ˜Ric. Still Proposition 1 holds, and one can unwrap to have in jg̃ ∼ in j0

but this time the unwrapped geometry is controlled in C1,β . This is enough however to get elliptic estimates
from Eqs. (10) and (11). This is the only time we will need an extension of Proposition 1.
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Then taking volumes we have

volg(B(�, r ′))= lim
m→∞ volg(∪i=m

i=1 B(xi , r ′))≤C(�, r, r ′) lim
m→∞ volg(∪i=m

i=1 B(xi , r))

=C(�, r, r ′)volg(B(�, r)),

which finishes the proof. ��
Proposition 4 Say Y (�) ≤ 0 and say (g̃, K̃ ) is a cosmologically normalized flow
satisfying the curvature assumption. We have the following properties.

1. Given � ≥ 0 and any DSLT, {σi }, the sequence of sets �φ,�(σi ) = {x ∈ �/

− φ(x, σi ) ≥ �} has AZRV.
2. Given � ≥ 0 and any DSLT, {σi }, the sequence of sets � ˜̂K ,�

(σi ) = {x ∈ �/

| ˜̂K (x, σi )|g̃(σi ) ≥ �} has AZRV.
3. Given � ≥ 0 and any DSLT, {σi }, the sequence of sets �∇ ˜̂K ,�

= {x ∈ �/

|∇ ˜̂K (x, σi )|g̃(σi ) ≥ �} has AZRV.
4. For any pair of DSLT, {σi } and {σ ′

i } with δ′ ≥ σi − σ ′
i ≥ δ (δ′ > δ > 0 and fixed)

we have

σi∫

σ ′
i

‖E‖2
L2

g̃(σ )

dσ → 0.

5. For any DSLT {σi } we have

Q̃0(σi ) = (‖E‖2
L2

g̃
+ ‖B‖2

L2
g̃
)(σi ) → 0.

and therefore the sets

�B,�(σi ) = {x ∈ �/|B(x, σi )|g̃(σi ) ≥ �},
� ˜̂Ric,�

(σi ) = {x ∈ �/| ˜̂Ric(xi , σi )|g̃(σi ) ≥ �},

have AZRV.

Proof 1. Differentiating

�g̃φ − |K̃ |2g̃φ = | ˜̂K |2g̃,

with respect to logarithmic time we get

�g̃φ̇ − |K̃ |2g̃φ̇ = −(�g̃ )̇φ + (|K̃ |2g̃ )̇φ + (| ˜̂K |2g̃ )̇. (13)
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Appealing to

˙̃g = 2φg̃ − 6Ñ ˜̂K ,

˙̂̃
K = − ˜̂K − φg̃ − ∇2φ + φE + E − Ñ (

˜̂K ◦ ˜̂K − 2 ˜̂K ),

(�g̃ )̇(φ) = 〈∇2φ, ˙̃g〉g̃ − 〈∇φ, Div ˙̃g + 1

2
dtrg̃

˙̃g〉g̃,

we get by Proposition 2 1 that the right-hand side of Eq. (13) has Cα norm controlled by
�. By the maximum principle on Eq. (13) ‖φ̇‖L∞ is controlled by �. Therefore writing
φ(x, σ ) − φ(x, σi ) = ∫ σ

σi
φ̇(x, σ )dσ we see that if −φ(x, σi ) ≥ � there is T (�, �)

such that −φ(x, σ ) ≥ �/2 for every σ ∈ [σi , σi + T (�, �)]. Now suppose there is a
subsequence of {σi } denoted by {σi j } such that V(�φ,�(σi j )) ≥ M for some M > 0,
then V̇(σ ) = ∫

�
(dν)̇ = ∫

�
3φdν ≤ −3MT (�)/2 for any σ ∈ [σi j , σi j + T (�, �)].

Therefore as V is monotonic, it must be V(σ ) ↓ −∞ as σ → ∞ which is absurd.
2. This is direct from 1 above and Proposition 2 2.

3. We prove first the claim that if |∇ ˜̂K (x, σ )|g̃ ≥ � then there is r(�, �) and

x ′ ∈ B(x, r) such that | ˜̂K (x ′, σ )|g̃ ≥ M for some M(�, �) > 0. This shows
that �∇ ˜̂K ,�

(σ ) ⊂ B(� ˜̂K ,M
(σ ), r). Once this is proved, by Propositions 3 and 4 2

B(� ˜̂K ,M
(σi ), r) and therefore �∇ ˜̂K ,�

(σi ) have AZRV which would finish this item.

Now let us prove the claim. From now on if at x , in jg̃(σ )(x) is small we unwrap to

have in jg̃(σ )(x) ≥ in j0 > 0. By Proposition 2 1 we have that ∇ ˜̂K is controlled in

Cα , therefore |∇ ˜̂K (x, σ ) − ∇ ˜̂K (y, σ )|g̃ ≤ C(�)d(x, y)α . Pick a unit vector v(x)

at x such that |∇v
˜̂K (x, σ )|g̃ ≥ �/3. Pick a harmonic chart {xi } covering the ball

B(x, in j0) such that the Christoffel symbols �k
i j are zero at x (this is always possible)

and write in the {xi } coordinates

(∇v
˜̂K ) jk(y) = vi∂xi

˜̂K jk(y) − �l
jk′(y)

˜̂Klk(y)vk′
(y) − �l

kk′(y)
˜̂K jl(y)vk′

(y).

Pick r(�, �) ≤ in j0 with rαC(�) ≤ �/20 such that |�l
i j

˜̂Klk | ≤ �/40 on B(x, r).

Then on B(x, r) we have |∂v
˜̂K (x)−∂v

˜̂K (y)| ≤ �/10 and therefore | ˜̂K (p)− ˜̂K (q)| ≥
�2r/4 where p and q are the intercepts of the line (in the coordinate system {xi }) x+λv

and the boundary of the ball B(x, r). So either | ˜̂K (p)| or | ˜̂K (q)| must be greater or
equal to �r/4. This finishes the proof of the claim.

4. We start by noting the following. Say f and h are tensorial quantities such that,
given � > 0 and any DSLT , {σi }, ‖h‖L∞

g̃
(σi ) and ‖ f ‖L∞

g̃
are controlled by � and

the sequence of sets � f,�(σi ) = {x ∈ �/| f (x, σi )|g̃ ≥ �} has AZRV, then: (a) for
any DSLT, {σi }, it is (

∫
�

|h ∗ f |2g̃dvg̃)(σi ) → 0 (∗ is some tensorial composition) and
(b) for any pair of DSLT, {σi } and {σ ′

i } as in the statement of this item (Proposition 4,
4), it is

∫ σi
σ ′

i
(
∫
�

|h ∗ f |2dvg̃)dσ → 0 as σi → ∞. The claim (a) is obvious by writing

|h ∗ f |g̃ ≤ c|h|g̃| f |g̃ for some numeric c. For the claim b) observe that if the claim
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On the asymptotic spectrum of the reduced volume in cosmological solutions 1099

holds for h = 1 it holds for any h. Now if it is false for h = 1 we can extract a
sequence of logarithmic times {σ̄i } with σi ≥ σ̄i ≥ σ ′

i and (
∫
�

| f |2g̃dvg̃)(σ̄i ) � 0
which contradicts (a).

Now note that by 2 above, the claim (a) and

Curlg̃ K̃ = −B,

we have that for any DSLT {σ̄i }, ‖B‖L2
g̃
(σi ) → 0.

We will prove this item by studying the quantity

∫

�

〈E,
˜̂K 〉g̃dvg̃, (14)

and its derivative with respect to logarithmic time. Differentiating it with respect to σ

we get

⎛

⎝
∫

�

〈E,
˜̂K 〉g̃dvg̃

⎞

⎠ =̇
∫

�

〈Ė,
˜̂K 〉g̃+〈E,

˙̂̃
K 〉g̃−〈E ◦ ˜̂K g̃, ˙̃g〉+3〈E,

˜̂K 〉g̃φdvg̃. (15)

To estimate the terms on the right-hand side of the last equation we appeal to the
equations

˙̃g = 2φg̃ − 6Ñ ˜̂K , (16)

Ė = ÑCurlg̃ B − ∇ Ñ

Ñ
∧g̃ B − 5

2
E ×g̃ K̃ − 2

3
〈E, K̃ 〉g̃ g̃ − 3

2
E, (17)

˙̂̃
K = − ˜̂K − φg̃ − ∇2φ + φE + E − Ñ (

˜̂K ◦ ˜̂K − 2 ˜̂K ). (18)

Recall 3Ñ = φ + 1. Integrate both sides of Eq. (15) in the interval [σ ′
i , σi ] and plug

in the equations (16)–(18). By the claim (a) above the left-hand side (of the integrated
equation) converges to zero as i → ∞. Using the items 1, 2 and the claim (b) above
we get that the only terms on the right-hand side (of the integrated equation) that may
not converge to zero as i → ∞ are

σi∫

σ ′
i

∫

�

〈E,∇2φ〉g̃d vg̃dσ, (19)

σi∫

σ ′
i

∫

�

Ñ 〈Curlg̃ B,
˜̂K 〉g dvg̃dσ, (20)
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and

σi∫

σ ′
i

∫

�

|E |2g̃dvg̃dσ. (21)

To show that the Eqs. (19) and (20) converge to zero as i → ∞ we integrate by parts.
In Eq. (19) integration by parts gives

σi∫

σ ′
i

∫

�

−〈DivE,∇φ〉gdvg̃dσ,

which by the formula Divg̃ E = K̃ ∧g̃ B and the claim (b) above is guaranteed to
converge to zero as i → ∞. To integrate by parts on Eq. (20) invoke the formula

Div(U ∧ U ′) = −〈CurlU, U ′〉 + 〈U, CurlU ′〉,

holding for any U and U ′ traceless symmetric tensors. This gives

σi∫

σ ′
i

∫

�

〈B,∇ Ñ ∗ ˜̂K + ÑCurl ˜̂K 〉dvg̃dσ, (22)

(∗ is some tensor operation). After using the formula Curlg̃
˜̂K = −B in Eq. (22),

claim (b) above shows that all the expression goes to zero as i → ∞. We are thus lead
to conclude that the expression (21) goes to zero as i → ∞ as desired.

5. We have shown in 4 that ‖B‖2
L2

g̃(σi )
goes to zero as i → ∞ for any DSLT {σi }. To

show that the same happens for E we make use of the Bel-Robinson energy. Observe
that 1

H
∫
�

(|E |2g + |B|2g)dvg = 1
H

∫
�

QT T T T (Rm)dvg = ∫
�

QT̃ T̃ T̃ T̃ ( ˜Rm)dvg̃ =
∫
�

(|E |2g̃ + |B|2g̃)dvg̃ . Using the Gauss equation we get

˙̃Q = Q̃ − 9
∫

�

Ñ Q̃
αβ T̃ T̃ �̃αβdvg̃. (23)

Now suppose there is a DSLT, {σi }, such that
∫
�

|E |2g̃dvg > M for some M > 0. As
the right-hand side of Eq. (23) is controlled by � we can find T (�, M) such that the
integral in σ of the right-hand side of Eq. (23) on the interval [σi , σi +T ] is, in absolute
value, less than M/2 and therefore integrating Eq. (23) on the interval [σi , σ ] with
σ ∈ [σi , σi + T ] we get Q̃(σ ) ≥ M/2. Therefore

∫ σi +T
σi

Q̃dσ ≥ T M/2. However by

4 we know
∫ σi +T
σi

∫
�

|E |2g̃ + |B|2g̃dvg̃dσ → 0 which is a contradiction. ��
We are now ready to prove Theorems 1 and 2 (stated conveniently).
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Fig. 2 Representation of the
space of metrics on a
neighborhood of g̃H

Theorem 3 Say Y (�) ≤ 0 and say (g̃, K̃ ) a cosmologically normalized flow
satisfying the curvature assumption. Then (g̃, K̃ ) induces a unique persistent
geometrization on �.

Proof We prove first there is a DSLT, {σi } with (�
1
i , (g̃, K̃ )(σi )) converging to

∪i=n
i=1(Hi , (g̃H,i ,−g̃H,i )) (in C2,β ). Introduce a new variable j = 1, 2, 3, . . . For

j = 1 find a sequence {σ1,i } with (�1, g̃(σ1,i )) convergent in C2,β . For j = 2
find a subsequence {σ2,i } of {σ1,i } with (�1/2, g̃(σ2,i )) convergent in C2,β . Proceed
similarly for all j to have a double sequence {σ j,i }. Now, the diagonal sequence {σi,i },
(�1/ i , g̃(σi,i )) converges into a union of complete manifolds of finite volume, deno-
ted as ∪ν(Mν, g̃∞,ν). By Proposition 4 2, K̃ (σi,i ) converges to −g̃∞,ν in C1,β . By
Proposition 4 5 and the formula E = ˜Ric − 3K̃ + K̃ ◦ K̃ we get that each metric
g̃∞,ν is hyperbolic. Therefore, as there is a lower bound for the volume of com-
plete hyperbolic manifolds of finite volume and the total volume of the limit space
is bounded above, there must be a finite number of components, and we can write
∪ν(Mν, g̃∞,ν) = ∪i=n

i=1(Hi , g̃H,i ).
We prove next that each component (Hj , g̃H, j ) is persistent. For simplicity assume

there is only one component and therefore (�1/ i , g̃(σi,i )) converges in C2,β to (H, g̃H ).
There are two possibilities according to whether the component is compact ot not, we
discuss them separately.

1. (The compact case) Assume (H, g̃H ) is compact. Consider the space of metrics
MH in H . For every metric g consider the orbit of g under the diffeomorphism
group. Denote such orbit by o(g). Around g̃H consider a small (smooth) section S of
MH of C2,β

g̃H
metrics transverse to the orbits generated by the action on MH of the

diffeomorphism group.17 For an illustration see Fig. 2.
If ε0 is sufficiently small every (C∞) metric g in MH with ‖g − g̃H ‖

C2,β

g̃H

≤ ε0 can

be uniquely projected into S by a diffeomorphism, or in other words we can consider

17 Which particular section is taken is unimportant. One can use for instance S = {g/ id : (H, g) →
(H, g̃H )} is harmonic (see [3,9]). The same comment applies in the non-compact case.
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the projection P(g) = o(g) ∩ S. Note that one can project every (C∞) path of (C∞)
metrics g(t) starting close to g̃H , to a (C∞) path P(g(t)), until at least the first time
when ‖P(g(t)) − g̃H ‖

C2,β

g̃H

= ε0 or in other words until at least when the projection

touches the boundary of the ball of center g̃H and radius ε0 in C2,β

g̃H
(denote such ball

as B(g̃H , ε0)).18

Recall Mostow rigidity19

Mostow rigidity (the compact case) There is ε1 such that if P(g′
H ) ∈ B(g̃H , ε1),

where g′
H is a hyperbolic metric in H then P(g′

H ) = g̃H .
Fix ε2 = min{ε0, ε1}. Observe that as g̃σi,i → g̃H in C2,β there is a sequence of

diffeomorphisms φi such that φ∗
i (g(σi,i )) converges to g̃H in C2,β

g̃H
. Now, if the geome-

trization is not persistent there is ε ≤ ε2 and i2 such that if i ≥ i2 then P(φ∗
i (g̃(σ )))

is well defined for σ ≥ σi,i until a first time σi,i + Ti when P(φ∗
i (g̃(σi,i + Ti ))) is in

∂ B(g̃H , ε2). But we know the sequence of Riemannian manifolds (H, P(φ∗
i (g̃(σi,i +

Ti )))) converge in C2,β to g̃H , and that means by the definition of C2,β conver-
gence and Mostow rigidity that there is a sequence of diffeomorphisms ϕi such that
P(ϕ∗

i (P(φ∗
i (g̃(σi,i + Ti )))) converge to g̃H in C2,β

g̃H
. This contradict the fact that

P(φ∗
i (g̃(σi,i + Ti ))) is in ∂ B(g̃H , ε2).

2. (The non-compact case). The proof of this case proceeds along the same lines
as the compact case but special care must be taken at the cusps. Let us assume for
simplicity that there is only one cusp in the piece (H, g̃H ). Given A sufficiently small
there is a unique torus transverse to the cusp, to be denoted by T 2

A , of constant mean
curvature and area A. Denote by HA the “bulk” side of the torus T 2

A in H . Consider the
set of metrics MHA on HA such that for any of them T 2

A has constant mean curvature
and area A. Consider the action of the diffeomorphism group on MHA leaving the
torus T 2

A invariant. Again the orbit of g will be denoted by o(g). Consider a small
(smooth) section of S of C2,β metrics around g̃H and transverse to the orbits of the
action by the diffeomorphism group mentioned above. Finally consider the projection
P(g) = o(g) ∩ S which is well defined on a ball B(g̃H , ε0) for ε0 small enough.
Observe again that a path g(t) of metrics in MHA can be projected into S until at
least the first time when P(g(t)) is in ∂ B(g̃H , ε0). Slightly abusing the notation (as we
would need a pointed sequence) consider the sequence (�, g̃(σi,i )) converging in C2,β

to g̃H . If i ≥ i0 we can identify on � a torus T 2
A,g̃(σi,i )

of constant mean curvature and
area A which converges as i → ∞ (and after the application of a diffeomorphism) to
T 2

A in H .20 More in particular there is a sequence of diffeomorphisms (onto the image)

18 We consider C∞ paths of C∞ metrics because we have assumed the solution g and therefore the zero
shift flow to be C∞. It is not difficult to show that independent of the section S considered, a path g(t) as
above (leaving or not the ball B(g̃H , ε)) can be projected into S until at least a first time when the projection
touches the boundary of the ball. Note that if φ∗

t (g(t)) = P(g(t)) ∈ B(gH , ε0) ∩ S for t < t∗ then for
every t1 < t∗ φ∗

t1
(g(t)) is a path in B(gH , ε0) for t in a neighborhood of t1 and which therefore can be

projected into S.
19 Mostow rigidity says that any two hyperbolic metrics on a compact manifold are necesarily isometric.
What we state as Mostow rigidity here is an obvious consequence of this fact.
20 For a proof of this fact see the footnote in page 328 in [9].
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φi : HA → � such that φi (T 2
A) = T 2

A,g̃(σi,i )
and ‖φ∗

i (g̃(σi,i )) − g̃H ‖
C2,β

g̃H

converging

to zero. We note the following crucial facts (justified below).
(i) The diffeomorphisms (onto the image) φσ : HA → � with φσ (T 2

A) = T 2
A,g̃(σ )

can be defined (varying differentiably) as long as the tori T 2
A,g̃(σ )

are well defined
(varying differentiably).

(ii) There are σ0 and ε1 such that if σ1 ≥ σ0 and φσ1 : HA → � is well defi-
ned and ‖φ∗

σ1
(g̃(σ1)) − g̃H ‖

C2,β

g̃H

≤ ε1 then the tori T 2
A,g̃(σ )

are well defined, varying

differentiably for σ on a neighborhood of σ1.
(iii) If for σ1 ≥ σ0 φσ1 : HA → � is well defined and satisfies ‖φ∗

σ1
(g̃(σ1)) −

g̃H ‖
C2,β

g̃H

≤ ε1 then φσ is well defined until at least the first time σ2 ≥ σ1 when

‖P(φ∗
σ2

(g̃(σ2))) − g̃H ‖
C2,β

g̃H

= ε1.

The fact (i) is self evident. The fact (ii) is the most important to consider and can be
justified as follows. It is well known that under curvature bounds the injectivity radius
cannot collapse in finite distance from a region that is non-collapsed. In particular
if ‖φ∗

σ1
(g̃(σ1)) − g̃H ‖

C2,β

g̃H

≤ ε1 for ε1 sufficiently small the “bulk” side of T 2
A,g̃(σ1)

is non-collapsed and therefore the “cusp” side of T 2
A,g̃(σ1))

is non collapsed in finite

distances from the “bulk” side. Now, if σ1 is big enough the Cβ norm of ˆRic around
T 2

A,g(σ1)
must be small otherwise one may find a DSLT for which the pointed sequence

(�, pi , g̃(σi )) with pi ∈ T 2
A,g̃(σi )

is not converging into a complete hyperbolic metric
of finite volume. This shows in particular that if σ0 is big enough the geometry nearby
T 2

A,g̃(σ1)
is close (in C2,β ) to the geometry nearby T 2

A in H . By the continuity of the

flow the tori T 2
A,g̃(σ )

are well defined for σ in a neighborhood of σ1. The fact (iii)

follows directly from (ii).
Recall Mostow Rigidity21

Mostow rigidity (the non-compact case) There is A0 such that for any A ≤ A0 there
is ε0 such that if (�′, g′

H ) is a complete hyperbolic manifold of finite volume and
φ : HA → �′ is a diffeomorphism onto the image satisfying ‖φ∗(g′

H )− g̃H ‖
C2,β

g̃H

≤ ε0

then (�′, g′
H ) is isometric to (H, g̃H ). In particular P(φ∗(g′

H )) = g̃H .
Given A ≤ A0 but so far arbitrary, fix ε2 = min{ε0, ε1}. Due to the facts (i)–(iii)

we have that if the geometrization is not persistent there is ε ≤ ε2 and i2 such that
if i ≥ i2 then P(φ∗

i (g̃(σ ))) is well defined for σ ≥ σi,i until a first time σi,i + Ti

when P(φ∗
i (g̃(σi,i +Ti ))) is in ∂ B(g̃H , ε2). Now the sequence P(φ∗

i (g̃(σi,i +Ti ))) has
a subsequence converging in C2,β to a complete hyperbolic metric in finite volume.
Again as in the compact case, by Mostow rigidity it must be converging in C2,β

g̃H
to g̃H

contradicting the fact that P(φ∗
i (g̃(σi,i + Ti ))) is in ∂ B(g̃H , ε2).

To finish the proof of the persistence of the geometrization one still needs to show
that the compliment of the persistent pieces (Hi , g̃H,i ) is the G sector or in other words
that for any ε > 0, (�ε(σ ), g̃(σ )) converges to the ε-thick part of the persistent pieces

21 For a proof of this fact as well as for realted discussions the reader can consult [9] (footnote on page
323).
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(Hi , g̃H,i ). The proof of this fact follows by contradiction. If this is not the case one
can extract a DSLT containing an H piece different from the pieces (Hi , g̃H,i ). One
can prove again that this new piece is persistent leading into a contradiction for if
persistent, the piece must be one of the pieces (Hi , g̃H,i ) by the way these pieces are
defined. ��
Theorem 4 Say Y (�) ≤ 0 and say (g̃, K̃ ) is cosmologically normalized flow satis-
fying the curvature assumption. Then limε→0(limσ V(�ε)) = 0.

Proof First observe that as the geometrization is persistent and the reduced volume is
monotonic, each one of the limits, in σ first and in ε later exists.

Consider the sets �H,�(σ ) = {x ∈ �/| ˜̂Ric(x, σ )|g̃ ≤ �}. These sets have ATRV
when σ → ∞ for any fixed � and r . Now consider the set �H,�,r (σ ) = {x ∈ �H,�/

| ˜̂Ric(x ′, σ )|g̃ ≤ 2�, for all x ′ ∈ B(x, r)}. This set has ATRV because the com-
plement is contained in the set B(� ˜̂Ric,�

(σ ), r) which we know must have AZRV

by Propositions 3 and 4. We will need an isoperimetric inequality for the balls of
radius one of the regions �ε ∩ �H,�,r for a suitable value of r and �. These values
of r and � will come out later using the proposition below. Recall Margulis lemma
[15, Corollary 5.10.2]

Lemma 1 (Margulis) There is ε0 such that for any complete hyperbolic three-manifold
�, �ε0 is (the �ε0 part of) one of the following models:

1. A horoball modulo Z or Z × Z (where the action on the half-space model is by
horizontal Euclidean translations) or,

2. a ball around a geodesic γ of some radius R modulo Z (where the action is by
translations along the geodesic γ ).

We use such ε0 in the proposition below.

Proposition 5 For any δ > 0, there is ε, σ0, r > 1 and � such that at any σ ≥ σ0,
and for any ball B(x, r) with x ∈ �ε(σ)∩�H,�,r (σ ) we can unwrap the ball to have
in j (x) ∼ ε0 and such that on it the ball of radius one is δ-close in C2,β to a ball of
radius one in one of the Margulis models above.

Proof of Proposition 5 Suppose by contrary there is a δ > 0 such that the proposition
doesn’t hold. Then for every i the conclusion is false for the set of parameters � = 1/ i ,
r = i , σ0 = i and ε(i) chosen in such a way that (at any logarithmic time) for any
ball B(x, r = i) with x ∈ �ε(i) ∩ �H,�=1/ i,r=i we can unwrap the ball to have
in jg̃(x) ∼ ε0. As we are assuming the conclusion is false for any i , we can find for
any i , σi > σ0 = i and xi in �εi (σi ) ∩ �H,�=1/ i,r=i (σ ) such the unwrapped ball
is δ-far from one of the Margulis models above. Now the sequence (in i) of such
unwrapped balls converges in C2,β to a complete Riemannian manifold and because
xi is in �H,�=1/ i,r=i (σi ) for every i it must be hyperbolic and therefore one of the
Margulis models by Lemma 1. This is a contradiction. ��

Now observe that at each point in any of the Margulis models there is one and only
one direction where the size of the (collapsed) fibers expands most. In the first two
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examples the directions are determined by the vertical geodesic congruence and in the
third by the congruence of geodesics coming out perpendicularly from the geodesic γ .
Observe that the direction is invariant under wrappings or unwrapping. Define in each
model a field X having norm one and in the direction of maximal fiber expansion. For
example if the model is a cusp, i.e. a horoball modulo Z × Z then (writing the metric
as gH = dx2 + e2x h where h is the flat metric in the two-torus induced by the action
of Z × Z in R

2) the vector field X is ∂x . It is a straight forward calculation that the
divergence of X in any one of the models is positive and bounded below and above
say by C1 and C2 (0 < C1 < C2). For example in the cusp case the divergence of
X is computed as ∇.X = 1√|gH |∂x (

√|gH |) = 2 with |gH | = A2e4x the determinant

of the metric gH in the coordinates (x, θ1, θ2) ((θ1 and θ2 are the natural coordinates
on T 2 = S1 × S1 and A is the area under h). Suppose now that we have a manifold
U made out of a finite (but arbitrary) set of balls of radius one taken from any one
of the three Margulis models. The balls may touch each other in an arbitrary fashion,
and therefore the boundary may not be entirely smooth although it is in a set of total
measure. Then

C1vol(U ) ≤
∫

U

∇.Xdv =
∫

∂(U )

〈X, n〉d S ≤ vol(∂U ),

(where we have used the fact that X is of norm one and therefore < X, n >≤ 1).
Observe also that for any s < 1

vol(B(∂U, s)) ≥ C(s)vol(U ). (24)

To see that observe that every point in the smooth part of the boundary joins with
one and only one closest center. Then using the isoperimetric inequality (24) above,
the set formed by all segments of length s starting at the points in the smooth parts
of the boundary and in the direction of their unique center must have a definite part of
the total volume. We have similar inequalities if the balls are made out of balls δ-close
in C2,β to one of the Margulis models for δ sufficiently small. From now on take such
δ in Proposition 5, to get the parameters �, r and ε.

Now lets go back to finish the proof of Theorem 2. Assume by the contrary there
is a sequence {σi } such that limε̄→0(limσi →∞ V(�ε̄)) = V0 > 0. We then have
limε̄→0(limσi →∞ V(�ε̄ ∩ �H,�,r )) = V0. Fix ε̄ ≤ ε. We can use the isoperime-
tric inequality (24) with s = 1/2, to conclude that limσi →∞ V(B(∂ B(�H,�,r (σi ) ∩
�ε̄(σi ), 1), s)) is bounded below by a non-zero constant independent of ε̄. Note that
the set B(∂ B(�H,�,r (σi )∩�ε̄(σi ), 1), s)) is disjoint from the set �H,�,r (σi )∩�ε̄(σi )

and that the sup{in j (x)g̃/x ∈ B(∂ B(�H,�,r (σi )∩�ε̄(σi ), 1), s))} converges to zero22

as i → ∞, therefore limε̄ (limσ→∞ V(�ε̄)) > V0 which is a contradiction. ��
We prove next Corollaries 1–5. Corollary 2 is direct from Theorem 2. For corol-

lary 3 observe that since V is monotonic there cannot be any H piece emerging and
so we are in the situation of Corollary 2. Corollary 5 is the content of Proposition 4

22 Under curvature bounds the injectivity radius propagates over finite distances, in particular if in jg̃(x) →
0 and d(x, y) < C then in jg̃(y) → 0.
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5. To prove Corollary 1 observe that as proved in [11] given � there is ε such that if
V(g̃, K̃ )−Vin f < ε then the thick–thin decomposition implements the Thurston geo-
metrization, therefore if the flow starts in a state (g̃, K̃ )(σ0) with V(g̃, K̃ )(σ0)−Vin f <

ε as V is monotonic the difference V(g̃, K̃ )(σ ) − Vin f is kept along the evolution, so
the Thurston geometrization is the persistent geometrization. By Theorem 2 it must
be V ↓ Vin f . For Corollary 4 observe again that by what has been proved in [11] and
Theorems 1 and 2, V ↓ Vin f iff the persistent long time geometrization is the Thurston
geometrization iff the tori separating the H and G sectors are incompressible.
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